Linkspotter is a package of the R software that mainly allows to calculate and visualize using a graph all the bivariate links of a dataset.
Its main features are:
It also offers a customizable user interface, allowing to:
Available link coefficients are:
Behind a proxy:
Load the package:
Take a look at the documentation:
The examples are carried out using “iris” data.
## [1] 0.6992338
## Number of variables: 5
## Number of couples: 10
## Number of observations: 150
## Coef.: pearson, spearman, kendall, mic, MaxNMI
## Start time: 2024-11-20 06:22:24.705656
## Correlation coef. computation finished: 2024-11-20 06:22:25.163285
## id X1 X2 typeOfCouple pearson spearman kendall
## 1 1 Sepal.Length Sepal.Width num.num -0.1175698 -0.1667777 -0.07699679
## 2 2 Sepal.Length Petal.Length num.num 0.8717538 0.8818981 0.71851593
## 3 3 Sepal.Length Petal.Width num.num 0.8179411 0.8342888 0.65530856
## 4 4 Sepal.Length Species num.fact NA NA NA
## 5 5 Sepal.Width Petal.Length num.num -0.4284401 -0.3096351 -0.18599442
## 6 6 Sepal.Width Petal.Width num.num -0.3661259 -0.2890317 -0.15712566
## 7 7 Sepal.Width Species num.fact NA NA NA
## 8 8 Petal.Length Petal.Width num.num 0.9628654 0.9376668 0.80689069
## 9 9 Petal.Length Species num.fact NA NA NA
## 10 10 Petal.Width Species num.fact NA NA NA
## mic MaxNMI correlationType
## 1 0.2770503 0.2033015 negative
## 2 0.7682996 0.6992338 positive
## 3 0.6683281 0.6322728 positive
## 4 NA 0.4873895 nominal
## 5 0.4391362 0.3789867 negative
## 6 0.4354146 0.3703042 negative
## 7 NA 0.2606311 nominal
## 8 0.9182958 0.8351786 positive
## 9 NA 0.8702060 nominal
## 10 NA 0.8920899 nominal
The Pearson correlation matrix:
corMatrixPearson<-corCouplesToMatrix(x1_x2_val = corCouples[,c('X1','X2',"pearson")])
print(corMatrixPearson)
## Petal.Length Petal.Width Sepal.Length Sepal.Width Species
## Petal.Length 1.0000000 0.9628654 0.8717538 -0.4284401 NA
## Petal.Width 0.9628654 1.0000000 0.8179411 -0.3661259 NA
## Sepal.Length 0.8717538 0.8179411 1.0000000 -0.1175698 NA
## Sepal.Width -0.4284401 -0.3661259 -0.1175698 1.0000000 NA
## Species NA NA NA NA 1
The MaxNMI matrix:
corMatrixMaxNMI<-corCouplesToMatrix(x1_x2_val = corCouples[,c('X1','X2',"MaxNMI")])
print(corMatrixMaxNMI)
## Petal.Length Petal.Width Sepal.Length Sepal.Width Species
## Petal.Length 1.0000000 0.8351786 0.6992338 0.3789867 0.8702060
## Petal.Width 0.8351786 1.0000000 0.6322728 0.3703042 0.8920899
## Sepal.Length 0.6992338 0.6322728 1.0000000 0.2033015 0.4873895
## Sepal.Width 0.3789867 0.3703042 0.2033015 1.0000000 0.2606311
## Species 0.8702060 0.8920899 0.4873895 0.2606311 1.0000000
## var group
## 1 Petal.Length 1
## 2 Petal.Width 2
## 3 Sepal.Length 3
## 4 Sepal.Width 4
## 5 Species 2
Complete Linkspotter computation:
## Number of variables: 5
## Number of couples: 10
## Number of observations: 150
## Coef.: pearson, spearman, kendall, mic, MaxNMI
## Start time: 2024-11-20 06:22:25.345008
## Correlation coef. computation finished: 2024-11-20 06:22:25.822929
## Clustering computation finished: 2024-11-20 06:22:25.829832
## Total Computation time: 0.485 secs
Complete Linkspotter computation from an external file:
## Length Class Mode
## computationTime 1 -none- character
## launchShiny 1 -none- function
## dataset 5 data.frame list
## targetVar 0 -none- NULL
## corDF 10 data.frame list
## corMatrices 5 -none- list
## corGroups 2 data.frame list
## clusteringCorMethod 1 -none- character
## defaultMinCor 1 -none- numeric
## defaultCorMethod 1 -none- character
## corMethods 5 -none- character
Then launch the user interface using:
Help:
The variables correspond to the nodes and their links correspond to the edges. Node color depends on the clustering. Edge color depends on the correlation direction quantitative couples (blue: positive correlation, red: negative correlation).
It produces the following:
Its type depends on the nature of the corresponding link:
It displays all the measurements calculated for the link corresponding to the clicked edge. When at least one of the variables is qualitative, only the MaxNMI has a value.
It produces the following:
Its type depends on the nature of the corresponding variable:
Its type depends on the nature of the variable:
This tab displays 2 tables:
The Correlation coefficient option allows you to choose the coefficient of correlation to be considered among those calculated initially.
Linkspotter uses and combine features coming from several other R packages, namely infotheo, minerva, energy, mclust, shiny, visNetwork, rAmCharts and ggplot2.